芯片帝国之场景篇 | GPU占领云端,手机应用ASIC,FPGA发力云端和车载【华体会】2021-02-10 02:38
上篇说到CPU、GPU、FPGA、ASIC及类脑芯片都是芯片界举足轻重的角色,但由于AI芯片对计算能力的拒绝,CPU在AI芯片中只起辅助和掌控功能,而类脑芯片则因还过于成熟期,仍未落地。因而,以下在对场景应用于的辩论中,更加多牵涉到GPU、FPGA、ASIC三类芯片。在应用于场景上,AI芯片的应用于主要分成云端和终端,这也是目前芯片领域又一分岔路口。以深度自学的算法来说,云端人工智能硬件负责管理“训练+推测”,终端只负责管理“推测”,因而终端的计算出来量更加小,没传输问题,更加适合于安防、汽车等功耗拒绝较低、安全性拒绝低的场景,终端也被看做未来发展方向。下文将AI硬件应用于场景分成云端和终端,云端指服务器端,还包括各种共计云、私有云、数据中心等;终端指安防、车载、手机等领域。云端场景:英伟达GPU生态领先,赛灵思FPGA追上,谷歌ASIC或是未来据测算,全球云端场景的AI芯片规模合计已约几百亿美元,是目前仅次于的AI应用于场景。基于云平台,各大科技巨头大力布局人工智能。不过再行来科普下,云计算平台是什么。云计算,获取能用的、便利的、按须要的网络采访,转入可配备的计算出来资源共享池(资源还包括网络、服务器、存储、应用软件、服务),还包括IaaS(基础设施即服务),Paas(平台即服务),Saas(软件即服务)三层。目前各大科技巨头争相在自有云平华体会台基础上配备人工智能系统,主要有IBM的waston、亚马逊的AWS、以及国内的阿里云、百度云平台等。其中英伟达的GPU使用更加普遍,英特尔的CPU、阿尔特纳的FPGA等也有用于,而谷歌则用于自研的ASIC芯片TPU。GPU应用于研发周期短,成本比较较低,技术体系成熟期,目前全球各大公司云计算中心如谷歌、微软公司、亚马逊、阿里巴巴等主流公司皆使用GPU展开AI计算出来,GPU是目前云端应用于范围最广的芯片,而英伟达则是仅次于的GPU芯片供应商,占有99%市场份额。2017年5月,英伟达公布了Tesla V100,使用台积电12nm FFN制程并统合210亿颗电晶体,在深度自学的性能上等同于250颗CPU。不过其也面对着老二AMD的不利挑战。野村证券称之为英伟达正在企图制止将15-20%的数据中心处理器份额让出AMD。今年第二季度,AMD专门为数据中心研发的EPYC处理器被还包括惠普企业、思科系统、腾讯云、意大利国家核物理研究所等使用,销售额同比快速增长53%。AMD称之为,预计EPYC将在今年年底超过“中等个位数”的份额。另外,赛灵思、英特尔、百度等厂商也在大力使用FPGA在云端展开加快。目前全球FPGA市场主要被赛灵思(Xilinx)和阿尔特纳(Altera)瓜分,两者合计占据近90%的市场份额。全球七大超大规模云服务公司,有3家使用了赛灵思FPGA。去年8月,百度也和赛灵思合作公布了基于FPGA的云计算加快芯片XPU。而老二阿尔特纳则在2015年被英特尔并购,今年4月,英特尔阿尔特纳的FGPA被月应用于主流的数据中心OEM厂商中,客户还包括戴尔、富士通等。除GPU和FPGA外,AI领域专用架构芯片ASIC则因其更佳的性能和功耗,沦为云端领域新的搅局者,谷歌就是ASIC在数据中心应用于的先行者。谷歌2017年5月发售TPU,与GPU比起耗电量减少60%,芯片面积上升40%,能更佳的符合其可观的AI算力拒绝。今年2月,谷歌以Beta测试的形式对外开放了TPU,5月公布了TPU 3.0,8月又发售为边缘计算出来自定义的Edge TPU。不过TPU目前并不对外发售,但对英特尔、英伟达这些传统数据中心业务的大佬来说,也不足以构成威胁。总体来说,目前,GPU仍然是数据中心的主力,FPGA的角色也渐渐显得更加最重要,而TPU等,则更加有可能因其较好的性能和功耗,沦为未来的主流方向,但其性能还须要更进一步检验。安防:英伟达GPU领先,国内创企FPGA落地,Movidiu的ASIC芯片广泛应用由于天然具备大量必须处置的视频等非结构化数据,安防目前已沦为AI落地最慢的场景之一。用AI赋能安防,能很大提升跟踪效率,增进事后防止向事前防止切换。